Paper Reading - A Hierarchical Multi-task Approach for Learning Embeddings from Semantic Tasks


问题

训练层级多任务。

关键想法

根据任务关系组合不同的任务,简单任务在下,复杂在上,下层任务对上层进行辅助。这里选择NER,EMD,CR,RE四个任务,分三层。NER-〉EMD-〉CR和RE

模型

model

  1. 结构

    • Embedding: character emb + Glove + ELMo
    • Encoder: Multi-layer BiLSTM for each task
    • Decoder: CRF for NER and EMD, Scorer for CR and RE
  2. 数据

    利用标注好的不同训练数据

  3. 训练 随机选择任务,选择batch

技巧

利用BILOU tagging,不是以前的BIO。

效果

NER,EMD,RE三个任务达到SOTA

评论

  1. 建设任务层级有效果
  2. 多任务能加速训练
  3. 不同层embedding联合能提高效果

其他

论文地址: https://arxiv.org/pdf/1811.06031.pdf


Problem

Perform multi-tasks in a hierarchical manner.

Key Ideas

Construct task hierarchy according to their relation. Here choose NER, EMD (Entity Mention Detection), Coreference Resolution and Relation Extraction. NER-〉EMD-〉CR and RE

Model

  1. Structure

    • Embedding: character emb + Glove + ELMo
    • Encoder: Multi-layer BiLSTM for each task
    • Decoder: CRF for NER and EMD, Scorer for CR and RE
  2. Data

    Use different existing labeled training data

  3. Training

    Randomly select task and data batch.

Tricks

Use BILOU (Beginning, Inside, Last, Outside, Unit) tagging scheme.

Performance

Get new SOTA performance for NER, EMD, RE.

Comments

  1. Construct task hierarchichy is useful.
  2. Multi-task can accelerate training.
  3. Combine different layer’s embedding can help.

Others

Paper link: https://arxiv.org/pdf/1811.06031.pdf